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Abstract

We study the effect of viscosity on the thermal transfer at the interface associated with a spherical liquid droplet

impulsively started at constant velocity in another liquid of large extent at rest. Exact solutions for the thermal dis-

tributions are derived at short moving time. From algebraic and numerical considerations we show that viscous effects

on the thermal transfer at the interface are negligible by comparison with the inviscid solutions. On the contrary, they

predominantly occur on both side of it, in the two adjacent boundary layers, with a spreading effect with time.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A knowledge of the heat and also the mass transfer

related to a moving droplet is of importance both for its

fundamental interest and for technical applications in a

number of industrial process such as conversion of saline

to fresh water, for example. The aim of this paper is to

analyze the effect of viscosity on the transient heat

transfer associated with an impulsively translating

droplet of a given liquid, moving at constant velocity in

another liquid of large extent at rest. Our calculations

are based on the thin boundary layer approximation,

according to a perturbative scheme valid under the

condition of sufficiently large Reynolds and Peclet

numbers. Generally speaking, viscid effects are weak at

large Reynolds numbers. However, it is not necessarily

any more the case with more moderate Re values, still
compatible with the thin boundary layer constraint.

Then, their effect on the thermal transfer, namely their

algebraic and numerical evaluation, and their localiza-

tion in the interfacial region justifies the interest of this
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study. In this work, we assume that the droplet keeps its

spherical shape, an assumption which will be examined

later (Section 5). Moreover, we restrict our analysis to

heat transfer at short time, i.e., when a well-defined di-

mensionless time variable s is sufficiently small. In this

limit, the energy conservation equation is solved ana-

lytically and exact expressions for the thermal distribu-

tions are derived. They are based on expansions of the

thermal internal and external distributions on a set of

Hermite polynomials. Our study is supplemented with a

numerical evaluation of these solutions in two practical

cases, namely droplets of n-pentane and carbon tetra-

chloride in water. The effect of viscosity on the heat

transfer is finally discussed.
2. Pertubative scheme for the analysis of thermal bound-

ary layers

We consider a spherical droplet of constant radius R,
made of a given liquid having initially a uniform tem-

perature T0, impulsively being started at time t ¼ 0 at

constant velocity U1, in another liquid of infinite extent,

initially at rest with a uniform temperature T1. For
practical calculations, it is more convenient to consider
ghts reserved.
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Nomenclature

Pe Peclet number

Pr Prandtl number

Re Reynolds number

R droplet radius

T0 initial temperature of the droplet

T1 temperature of the external liquid

U1 droplet velocity

cp specific heat

k thermal conductivity

e subscript for the external liquid

i subscript for the internal liquid (droplet)

j thermal diffusivity¼ k
qcpl dynamic viscosity

m kinematic viscosity¼ l
qq specific gravity

s dimensionless time¼ U1t
Rr interfacial tension

kTe ¼
ffiffiffiffiffiffiffiffiffi
Pree
Ree

r
kTi ¼

ffiffiffiffiffiffiffiffi
Prei
Ree

r
b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keqecpe
kiqicpi

s
n ¼

ffiffiffiffiffiffiffiffiffi
liqi

leqe

r
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the reversed situation where the droplet is at rest in a

liquid with a velocity �U1 at large distance away from

it. As previously mentioned, the shape of the droplet is

assumed to remain unchanged as it moves. This as-

sumption holds provided that Reynolds numbers are not

too large (ReK 500) and that the interfacial tension r is

sufficiently large [1]. These constraints will be reexam-

ined in Section 5. Following a procedure suggested by

Boltze in his study of boundary layers over a body of

revolution, we introduce a curvilinear system of coor-

dinates [2] as shown in Fig. 1. We denote by x ¼ Rh the

arc length measured along any meridian from the front

stagnation point, and y the coordinate normal to the

droplet surface, taken outward as positive. In this work,
Fig. 1. Curvilinear system of coordinates at the spherical in-

terface.
the internal and external fluids will be referenced by the

subscripts i and e respectively. Each of them is charac-

terized by its specific gravity q, specific heat cp, thermal
conductivity and diffusivity, k and j ¼ k=qcp respec-

tively, dynamic and kinematic viscosity, l and m ¼ l=q,
respectively. For each of them, the relevant dimension-

less numbers are the Reynolds number Re ¼ 2RU1=m;
the Peclet number Pe ¼ 2U1R=j, and finally the Prandtl

number Pr ¼ m=j � Pe=Re.
On the basis of the main following assumptions: (a)

fully developed internal circulation, (b) inviscid flow

fields (i.e., large Reynolds numbers) and, (c) thin ther-

mal boundary layers (i.e., large Peclet numbers), then

Chao [3] has shown that the transient internal and ex-

ternal thermal distributions express exactly as:

Te � T1
T0 � T1

¼ 1

1þ b
erfc we; for yP 0 ð1aÞ

Ti � T1
T0 � T1

¼ 1� b
1þ b

erfc wi; for y6 0 ð1bÞ

Here, erfc u ¼ ð2=
ffiffiffi
p

p
Þ
R1
u expð�z2Þdz stands for the

complementary error function [4], b ¼ ððkeqecpeÞ=
ðkiqicpiÞÞ

1=2
and the dimensionless variables we and wi are

defined as:

we;i ¼
1

2

Pee;i
c

� �1=2 jyj
R

ð2Þ

with

c ¼ 4

3

f

sin4 h
ð3Þ

fðh; sÞ is a function of cos h and the dimensionless time

variable 1 s ¼ U1t=R, defined as [3]:
1 In Chao�s original paper [3], the dimensionless time

variable is defined as s ¼ jet=R2 with ð3=2ÞPees ¼ 3ðU1t=RÞ.
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f ¼ ðf � cos hÞ � 1
3
ðf 3 � cos3 hÞ ð4Þ

where

f ¼ 1þ cos h � ð1� cos hÞ expð�3sÞ
1þ cos h þ ð1� cos hÞ expð�3sÞ ð5Þ

For well-defined initial and boundary conditions sup-

pemented with conditions at the interface (see Section 4),

Eqs. (1a) and (1b) are the solutions of the energy

equation for the thermal external and internal boundary

layers:

oTe;i
ot

þUe;i 
 rTe;i ¼ je;i

o2Te;i
oy2

ð6Þ

where r ¼ o
oy ;

1
R

o
oh

� �
stands for the gradient operator

expressed in the curvilinear coordinates detailed above,

and Ue;i ¼ ðUr;UhÞe;i is the inviscid flow field vector. The

radial and circumferential velocity component, Urðe;iÞ
and Uhðe;iÞ, of the external and internal flow fields are

well known. The latter was first given by Hill [5]. Owing

to the thin boundary layer approximation, valid when-

ever jyj=R� 1, they are approximated as:

Ure ¼ �Uri ¼ �3U1
yj j
R

cos h ð7aÞ

Uhe ¼ Uhi ¼ 3
2
U1 sin h ð7bÞ

In this work, our main objective is to evaluate the re-

sulting effect of the viscosity of both fluids on the tran-

sient thermal distributions at and in the vicinity of the

interface. To do so, we first start splitting the thermal

and flow fields distributions as:

Te;i ¼ T e;i þ eTTe;i ð8aÞ

Ue;i ¼ Ue;i þ eUUe;i ð8bÞ

The first ones, adorned with a bar on the top, corres-

pond to Chao�s solutions (1a) and (1b) for the thermal

distributions and to solutions (7a) and (7b) for the flow

fields. The second one, adorned with a tilde on the top,

stands for complemented contributions to these flows

concerned with viscid effects.

Putting expressions (8a) and (8b) in Eq. (6) provides

the required differential equations for the thermal dis-

tributions eTTe;i. These equations get simplified when

making use of a perturbative scheme for their resolution.

For that purpose, we look at the predominant contri-

butions in the convective term U 
 rT . For the sake of
simplicity, the internal and external cases will not be

distinguished in what follows.Then, postulating that eUUr,eUUh, and eTT may be expanded according to the increasing

powers of small parameters, namely kr, kh and kT , and
noting that o=oy and ð1=RÞðo=ohÞ when acting as dif-

ferential operators on a function of the w variable

(Eq. (2)) yield contributions of order 
 ð
ffiffiffiffiffi
Pe

p
=RÞ and
ð
ffiffiffiffiffi
Pe

p
=RÞðjyj=RÞ respectively, it is easily shown that each

term in U 
 rT , in unit ððU1ðT0 � T1ÞÞ=R, is of order:eUUrðoT=oyÞ 
 kr
ffiffiffiffiffi
Pe

p
, then UrðoeTT =oyÞ 
 kT ðjyj=RÞ

ffiffiffiffiffi
Pe

p
,

then ð eUUh=RÞðoT=ohÞ 
 kh

ffiffiffiffiffi
Pe

p
ðjyj=RÞ and finally ðU h=RÞ

ðoeTT =ohÞ 
 kT
ffiffiffiffiffi
Pe

p
ðjyj=RÞ. So it follows from this analysis

that in the thin boundary limit approximation, i.e., when

jyj � R and more precisely ðjyj=RÞ � ð1=
ffiffiffiffiffi
Pe

p
Þ, the

leading term in U 
 rT is just eUUr
oT
oy . The other remaining

terms can be neglected and we conclude that the viscid

contributions eTTe;i to the thermal distribution are also of

order kT 
 kr
ffiffiffiffiffi
Pe

p
: So the perturbative scheme under

consideration is also valid whenever kT 
 kr
ffiffiffiffiffi
Pe

p
� 1, a

condition which will be reexamined later. Neglecting fi-

nally the quadratic contribution eUU 
 reTT in the convec-

tive term provides the required equations for the eTTe;i�s, at
lowest order in the small kT parameters:

oeTTe;i
ot

þ eUUrðe;iÞ
oT e;i

oy
¼ je;i

o2eTTe;i
oy2

ð9Þ

Next in Eq. (9), we take for eUUrðe;iÞ and eUUhðe;iÞ the exact

expressions of the flow fields recently derived by one of

us [6], also in the thin boundary layer approximation

according to a perturbative scheme:eUUrðe;iÞ

U1
¼ se;i

2krðe;iÞ
1þ n

(
� 6c cos h i2erfc ue;i

�
� 1

4

�

þ erf ue;i 1

"
� 3c cos h � 1þ f

1þ cos h

� �4

e�6s

#)
ð10aÞ

eUUhðe;iÞ

U1
¼ � 3khðe;iÞ

1þ n
c1=2 sin h ierfc ue;i ð10bÞ

These expressions hold both for the internal and exter-

nal flow subject to take the se;i sign in (10a) as se ¼ þ1
and si ¼ �1. The n variable stands for n ¼ ðliqi=
leqeÞ

1=2
, and the parameters krðe;iÞ and khðe;iÞ are defined

as:

kre ¼
1

Ree
; kri ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
ReeRei

p ;

khe ¼
1ffiffiffiffiffiffiffi
Ree

p ; khi ¼
1ffiffiffiffiffiffiffi
Ree

p ð11Þ

They play the role of small expansion parameters in the

perturbative scheme of the flow fields, as previously

mentioned. Making use for the sake of simplicity of a

common notation both for external and internal flows,

we note that kr 
 ð1=ReÞ, from which it follows

kT 
 ð
ffiffiffiffiffi
Pe

p
=ReÞ. Then, the perturbative scheme for the

thermal problem, as discussed above, holds provided

kT 
 ð
ffiffiffiffiffi
Pe

p
=ReÞ � 1. Owing to the fact that Pr �

ðPe=ReÞ, this finally leads to the conditions kTe 
 ðPre=
ReeÞ1=2 � 1 for the external case and kTi 
 ðPri=
ReeÞ1=2 � 1 for the internal one.
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In expressions (10a) and (10b), the dimensionless ue
and ui variables are linked to the we and wi�s ones (Eq.
(2)) by:

ue;i ¼
we;iffiffiffiffiffiffiffiffi
Pre;i

p ð12Þ

They appear in Eqs. (10a) and (10b) as arguments of

functions inerfc u (where n¼ integer, and ierfc u �
i1erfc u) which correspond to the successive definite

integrals [4] of the complementary error function

erfc u ¼ 1� erf u.
Let us finally mentioned that contributions to the

thermal distributions derived solving Eq. (9) for the eTT 0
e;i�s

are closely related to dissipation due to the viscosity. In

Eq. (9), viscid effect are contained within the flow fields

(10a) and (10b) through the parameters defined in Eq.

(11) which are proportional to the viscosity of the liq-

uids. These flow fields themselves were deduced solving

the Navier–Stokes equation for both the internal and

external fluid according a perturbative scheme [6], and

the viscid contribution 
krðe;iÞ 
 Re originates from the

dissipative term 
mD eUU in these equations.
3. Small time solutions for the thermal problem

Eq. (9) supplemented with (10a) and (10b) cannot be

a priori solved analytically, at least at any time, but only

numerically. The results of this study will be detailed in a

forthcoming paper. In the present work, our main ob-

jective is to get quantitative and algebraic results for the

viscid effects on the thermal transfer, namely, to give us

some ideas as regards size. For that purpose, we restrict

our analysis to the study of transfer at short time

s ¼ U1t=R! 0. As shown in Appendix A, the govern-

ing Eq. (9) can be solved analytically in that limit.

Chao�s solutions (1a) and (1b) take then the form:

T
ð0Þ
e ¼ lim

s!0
T e ¼ T1 þ T0 � T1

1þ b
erfc w0

e ð13aÞ

T
ð0Þ
i ¼ lim

s!0
T i ¼ T0 �

b
1þ b

ðT0 � T1Þerfc w0
i ð13bÞ

with, owing to the fact that lim
s!0

c ¼ 2s:

w0
e;i ¼ lim

s!0
we;i ¼

1

2

Pee;i
2s

� �1=2 jyj
R

� jyj
2

ffiffiffiffiffiffiffiffi
je;it

p ð14Þ

One immediately get from (12):

u0e;i ¼ lim
s!0

ue;i ¼
1

2

Ree;i
2s

� �1=2 jyj
R

¼ jyj
2

ffiffiffiffiffiffiffi
me;it

p ð15Þ

In a similar way, the expressions (10a) and (10b) for the

flow fields reduce to
eUU 0
rðe;iÞ ¼ lim

s!0

eUUrðe;iÞ

¼ �24se;i
U1krðe;iÞ
1þ n

s cos h i2erfc u0e;i

�
� 1

4

�
ð16aÞ

eUU 0
hðe;iÞ ¼ lim

s!0

eUUhðe;iÞ

¼ � 3
ffiffiffi
2

p
khðe;iÞ

1þ n
s1=2 sin h ierfc u0e;i ð16bÞ

It is to be noted that the convective term in the left hand

side of Eq. (9) involves only the radial component of the

flow field. It reduces here to eUU 0
rðe;iÞðoT

0

e;i=oyÞ and is easily

derived from Eqs. (13a), (13b) and (16a) Then, writingeTT ð0Þ
e;i ¼ lim

s!0

eTTe;i, and searching at solutions expressed in a

dimensionlesss form:

eTT ð0Þ
e

T0 � T1
¼

ffiffiffi
2

p
kTe

ð1þ bÞð1þ nÞ cos hs3=2Feðw0
eÞ ð17Þ

eTT ð0Þ
i

T0 � T1
¼ b
1þ b

ffiffiffi
2

p
kTi

ð1þ nÞ cos hs3=2Fiðw0
i Þ ð18Þ

in which the kT ðe;iÞ parameters are defined as:

kTe ¼
ffiffiffiffiffiffiffi
Pre
Ree

r
; kTi ¼

ffiffiffiffiffiffiffi
Pri
Ree

r
ð19Þ

we get a new differential equation verified by the func-

tions Feðw0
eÞ and Fiðw0

eÞ as follows:

F
00 ðZÞ þ 2ZF

0 ðZÞ � 6F ðZÞ ¼ UðZÞ ð20Þ

Denoting z as the variable z ¼ Z=
ffiffiffiffiffi
Pr

p
, the right hand

side in (20) is defined as:

UðZÞ ¼ K expð�Z2ÞWðzÞ ð21aÞ

WðzÞ ¼ i2erfc z� 1

4
ð21bÞ

These formulas hold both for the external and internal

problem, with in each case:

K ¼ Ke ¼ þ 48ffiffiffi
p

p ; Z ¼ w0
e ; z ¼ u0e ; ð22Þ

K ¼ Ki ¼ � 48ffiffiffi
p

p ; Z ¼ w0
i ; z ¼ u0i ð23Þ

The homogeneous equation F
00 ðZÞ þ 2ZF

0 ðZÞ�
6F ðZÞ ¼ 0 possesses well known solutions [4], denoted

here as FhðZÞ, which are linear combinations of i3erfc Z
and i3erfc ð�ZÞ functions. We will retain here the only

one which is a fast decreasing function:

FhðZÞ ¼ C i3erfc Z ð24Þ

Making use of (24), a particular solution of the full

Eq. (20) may be found, applying twice the method based

on the variation of constants. For instance, a fast de-

creasing solution, which vanishes as Z ! 0 reads:
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FpðZÞ ¼ �i3erfc Z �
Z Z

0

dx
exp�x2

i3erfc xð Þ2

�
Z 1

x
dy UðyÞ i3erfc y ð25Þ

This solution is a function of Z and it depends also on

the Prandtl numbers (Pre or Pri) through UðyÞ (cf. Eqs.
(21a) and (21b)). Its practical evaluation requires how-

ever double quadratures. We find it better to calculate

FpðZÞ (at least a part of it) as an expansion on a set of

orthogonal Hermite polynomials. The method is de-

tailed in Appendix A . Recalling that z stands for Z=
ffiffiffiffiffi
Pr

p

we get from Eq. (A.18):

FpðZÞ ¼
K
32

e�Z
2

1

"
� erfc z 1

�
þ 1

3Pr
þ 4

3
z2
�

� 16ffiffiffi
p

p e�z
2
X
pP 0

rpH2pþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Pr

p
z

� �#
ð26Þ

The Hn�s stand here for the (odd) Hermite polynomials,

and the rp denotes the coefficients of the above-men-

tioned expansion. Their expressions are given explicitly

in (A.15a), (A.15b) and (A.16). Let us just remark that

as rp 
 r1ð1=2PrÞp�1 for pP 1, the polynomial expan-

sion in the right hand side of (26) is nothing but an

expansion in successive powers of ð1=2PrÞ. In the case of
liquids, this number is lower than unity for most of

them. 2 Collecting together (24) and (26), this allows us

to express finally the temperature distributions (17) and

(18) as:

eTT ð0Þ
e

T0 � T1
¼

ffiffiffi
2

p
kTe

ð1þ bÞð1þ nÞ cos hs3=2Feðw0
eÞ ð27Þ

eTT ð0Þ
i

T0 � T1
¼ b

ð1þ bÞ

ffiffiffi
2

p
kTi

ð1þ nÞ cos hs3=2Fiðw0
i Þ ð28Þ

with explicitly:

Fe;iðw0
e;iÞ ¼ Ce;i i3erfc w0

e;i þ Fpðe;iÞðw0
e;iÞ ð29Þ

In (29), the two constants Ce and Ci, which factorize the

homogeneous solutions have to be deduced from the

conditions at the interface (See Section 4). Also the nota-

tion Fpðe;iÞ has been used for FpðZÞ according to whether

Z ¼ w0
e or Z ¼ w0

i , and Pr ¼ Pre or Pr ¼ Pri within

z ¼ Z=
ffiffiffiffiffi
Pr

p
in expression (26).
2 It is possible however to express the polynomial expansion

in the right hand side of (26) in a different way, namely asP
p spH2pþ1ðzÞ in which the sp �s are now functions of the

parameter d ¼ ð1=ð1þ PrÞÞ > 1. This ensures the convergence

of the expansion whatever the value of Pr. These mathematical
derivations will not be presented in the present work.
4. Initial and boundary conditions. Conditions at the

interface

Owing to the initial and boundary conditions fulfilled

by Chao�s solutions [3], (Eqs. (1a) and (1b)), which hold

also for (13a) and (13b), the initial and boundary con-

ditions for the droplet velocity and viscid thermal dis-

tributions eTTeðy; h; tÞ and eTT iðy; h; tÞ (Eqs. (27) and (28))

read:

t < 0; t > 0

U ¼ 0; U ¼ U1

y < 0; y > 0eTTiðy; h; 0Þ ¼ 0; eTTeðy; h; 0Þ ¼ 0eTTið�1; h; tÞ ¼ 0; eTTeð1; h; tÞ ¼ 0

oeTT i
oh

ðy; 0; tÞ ¼ 0;
oeTTe
oh

ðy; 0; tÞ ¼ 0

oeTT i
oh

ðy; p; tÞ ¼ 0;
oeTTe
oh

ðy; p; tÞ ¼ 0

ð30Þ

The first four conditions on the thermal profiles are

readily ensured due to the fact that for t ! 0 or

jyj ! 1, it comes w0
e;i ! 1, and that (27) and (28) are

fast decreasing functions. The conditions on the deriva-

tives ðoeTTe;i=ohÞ ¼ 0 when h ¼ 0 or h ¼ p are also auto-

matically ensured as the angulaire dependence is only

contained within the explicit cos h term.

The conditions at the interface:eTTeð0; h; tÞ ¼ eTTið0; h; tÞ ð31Þ

ke
oeTTe
oy

ð0; h; tÞ ¼ ki
oeTTi
oy

ð0; h; tÞ ð32Þ

lead toffiffiffiffiffiffi
Pre

p
Feð0Þ ¼ b

ffiffiffiffiffiffi
Pri

p
Fið0Þ ð33Þffiffiffiffiffiffi

Pre
p

F 0
eð0Þ ¼ �

ffiffiffiffiffiffi
Pri

p
F 0
i ð0Þ ð34Þ

which provides

Ce ¼
1ffiffiffiffiffiffi
Pre

p Aþ bB
1þ b

; Ci ¼
1ffiffiffiffiffiffi
Pri

p B� A
1þ b

ð35Þ

The coefficients A and B in (35) are equal to:

A ¼ �6
ffiffiffi
p

p ffiffiffiffiffiffi
Pre

p
Fpeð0Þ

h
� b

ffiffiffiffiffiffi
Pri

p
Fpið0Þ

i
ð36aÞ

B ¼ 4
ffiffiffiffiffiffi
Pre

p
F 0
peð0Þ

h
þ

ffiffiffiffiffiffi
Pri

p
F 0
pið0Þ

i
ð36bÞ

From (26), one can check that:

Fpeð0Þ ¼ � Ke

96Pre
¼ � 1

2
ffiffiffi
p

p
Pre

;

Fpið0Þ ¼ � Ki

96Pri
¼ þ 1

2
ffiffiffi
p

p
Pri

ð37Þ
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which gives for A the following simple expression:

A ¼ 3
1ffiffiffiffiffiffi
Pre

p
�

þ bffiffiffiffiffiffi
Pri

p
�

ð38Þ

The exact calculation of the derivative F 0
pðZ ¼ 0Þ is given

in Appendix A (Eq. (A.20)). Taking into account of (22)

and (23) one gets:

F 0
peð0Þ ¼

Ke

16
ffiffiffi
p

p N Preð Þ � 3

p
NðPreÞ;

F 0
pið0Þ ¼

Ki

16
ffiffiffi
p

p NðPriÞ � � 3

p
NðPriÞ

ð39Þ

where the function NðPrÞ is defined by Eq. (A.21). This

yields finally for B (Eq. (36b)) the following result:

B ¼ 12

p

ffiffiffiffiffiffi
Pre

p
NðPreÞ

h
�

ffiffiffiffiffiffi
Pri

p
NðPriÞ

i
ð40Þ

It should be appreciated that the numerical coefficients A
and B given in Eqs. (38) and (40) are simple functions of

the Prandtl numbers Pre and Pri. The required Ce and Ci

coefficients are directly derived from Eq. (35), and sim-

ilarly to A and B, they depend only on Pre and Pri.
Finally, Chao�s solutions for the thermal distribu-

tions (1a) and (1b), corrected of viscid effects according

to (8a) in the short time limit read:

Te � T1
T0 � T1

¼ 1

1þ b
erfc we

0B@
þ 1

1þ
ffiffiffiffiffiffiffi
liqi
leqe

q ffiffiffiffiffiffiffiffiffi
2Pre
Ree

s
cos hs3=2Feðw0

eÞ

1CA
ð41aÞ

Ti � T1
T0 � T1

¼ 1� b
1þ b

erfc wi

0B@
� 1

1þ
ffiffiffiffiffiffiffi
liqi
leqe

q ffiffiffiffiffiffiffiffiffiffi
2 Pri
Ree

s
cos hs3=2Fiðw0

i Þ

1CA
ð41bÞ

Rigorously in that limit, the arguments of the erfc

functions in the Chao�s solutions would have to be taken
as w0

e and w
0
i (cf Eq. (14)). However, for practical and

numerical applications, it is better to retain the exact

expressions for we and wi (Eq. (2)) in order to get the

right angular and time dependence detailed explicitly in

(3)–(5).
3 It should be noted that this condition is less restrictive that

the constraint of a thin boundary thermal layer approximation

ðjyj=RÞ � ð1=
ffiffiffiffiffi
Pe

p
Þ.

4 Strictly speaking, the capillarity constant of a liquid

involves its surface tension against air.
5. Numerical application and discussion

In what follows, we apply the formalism detailed

above to the case where the dispersed phase is made of

organic droplets, namely n-pentane and carbon tetra-
chloride, plunged in a surrounding homogeneous me-

dium which consists of water at 20 �C. The initial

temperature of the droplet has been taken as 30 �C for n-
pentane, and 70 �C for carbon tetrachloride, practically

near below their boiling point (36.1 and 76.5 �C re-

spectively). Numerical datas for the liquids are given in

Table 1. For further numerical considerations, let us

recall that viscid contributions (27) and (28) were de-

rived under a number of limitating hypotheses: (a) a thin

boundary layer approximation, (b) a perturbative

scheme, (c) the shape of droplet kept fixed with time,

and (d) a short time analysis. Condition (a) implies that

Reynolds numbers are sufficiently large namely jyj
R � 1ffiffiffiffi

Re
p

where jyj is of the order of the hydrodynamic boundary
layer thickness. With, say jyjK R

5
, it yields Re� 25 for

the smallest of Ree and Rei; namely Ree in the present

case. So, one can retain as a very lower bound

Ree J 40–50. Condition (b) is fulfilled until the kT ex-

pansion parameters (19) are sufficently small which

means Ree � supðPre; PriÞ: For the actual values of the
Prandtl numbers Pre and Pri (see Table 1), it turns that
condition (b) is already fulifilled when condition (a)

applies. 3 Condition (c) implies that the viscosity of the

liquid droplets and the interfacial tension r are suffi-

ciently large to prevent modification of their spherical

shape, by damping inertial and gravitational effects. This

yields an upper bound on the internal Reynolds number

[1] Rei K 500. However, it must be noted at this stage

that viscid contributions (27) and (28) get fully negligible

when the Reynolds numbers exceed typically two hun-

dred. Thus our results hold practically within the range

50KRee K 200. A condition for the interfacial tension r
can be derived through the capillarity constant

a ¼ ð2r=qigÞ
1=2

of the liquid droplet. 4 This yields an

upper bound on its radius Rmax K a. For the organic

liquids considered in the present study, their interfacial

tension with water [7] is of order 50 mN/m. This makes

Rmax to be of order 0.5 cm. The interfacial tension also

enters in the expression of droplet frequency oscillations

[8], with a squared minimum frequency given by

x2
min ¼ ð8r=qiR

3Þ. Then, it follows that on average, the

droplet will remain nearly spherical as it moves if

ðU1=RÞ � xmin, which yields a condition on the Weber

number ð2RqiU
2
1=rÞ � 16: Practically it has been shown

[9] that if the Weber number is less than 4, droplets

would exhibit only little oscillations. Thus, for a given

radius, the droplet velocity U1 must not be too large

otherwise oscillations due to capillarity will affect its

shape. We can write this condition as U1 K ðr=meReeqiÞ,



Table 1

Numerical data for the liquids at 20 �C used in our numerical application (see Section 5)

n-pentane Carbon tetrachloride Water

q (kg/m3) 626.2 1593.4 998.23

l (mPa s) 0.235 1.0584 1.002

m (10�6 m2/s) 0.372 0.664 1.004

Pr 3.922 8.325 7.133

k (W/mK) 0.136 0.1078 0.5876

cp (J/gK) 2.270 0.848 4.1819

j (m2/s) 0.0957 0.0798 0.1408

With these values the parameters b and n defined in the nomenclature are found to be equal to 3.56 and 0.38 for n-pentane in water and
to 4.10 and 1.30 for carbon tetrachloride in water, respectively.
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Fig. 2. Comparison of the reduced thermal distributions in-

cluding viscid effects (dot lines), computed from Eqs. (41a) and

(41b), with the inviscid solutions by Chao [3] in the case of

droplets of n-pentane and carbone tetrachloride moving in

water.
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which practically gives U1 lower than a few cm/s. For

instance, for a droplet of carbon tetrachloride in water,

with Ree ¼ 100, we get U1 K 30 cm/s and then, RJ 0:15
mm. Looking now at condition d) with say, sK 0:3 as a
very large upper limit for the dimensionless time vari-

able, it comes for instance with U1 ¼ 2 cm/s, R ¼ 2:5
mm (which corresponds to Ree ¼ 100), tK 37:5 ms for

the true time variable. Finally, it should be noted that

thermal viscid distributions (27) and (28) were derived

with the underlying hypothesis that the physical pro-

perties of the liquids remain constant. This hypothesis is

valid provided that dissipation is sufficiently small. It is

known from the 1930�s that impulsively generated flows

around a body are initially inviscid. It follows that at

short time, the boundary layers on both sides of the

interface are very thin and viscous dissipative terms


mD eUU in the Navier–Stokes equation are large only in

that region. However, as is shown below, thermal dis-

tributions remain practically unaffected by these viscous

effects in the interfacial region. Consequently, refine-

ments to account for the variation of physical constants

may be no longer justified.

Hermite polynomials in the expansion of the FpðZÞ
function (Eq. (26)) have been computed up to p ¼ 10, on

a grid with a scale dz ¼ 0:01, in the dimensionless vari-

able z ¼ y
R within the range ()0.5, þ0.5). In the present

case, values for the upper coefficients rp in the polyno-

mial expansion were found to be 
10�20 for the external
problem and 
10�18 for the internal one. Also various

values for the external Reynolds number with Ree P 40,

the dimensionless time s with sP 0:01, and the h angle

have been retained.

Fig. 2 exhibits a plot of the internal and external

thermal distributions in the case Ree ¼ 40, s ¼ 0:3 at

h ¼ 30�. For this rather weak value of the Reynolds

number, the expansion parameters kT (19) are large and
equal to kTe ¼ 0:423 for water and kTi ¼ 0:313 for n-
pentane and kTi ¼ 0:456 for carbon tetrachloride re-

spectively. Despite this fact, the viscid corrections are

small and the thermal distributions remain very closed

to that of Chao. Similar results hold for other values of

the h angle and, obviously, for larger value of the Rey-
nolds number and/or smaller values of s, due to the

occurrence of the s3=2=
ffiffiffiffiffiffiffi
Ree

p
factor in the expressions

(41a) and (41b). Also , it is to be noted that these viscid

corrections do not really affect the interface (i.e., the

region located at y ¼ 0), but they develop in the adjacent

boundary layers.

The very small contribution of viscid effects to the

thermal distributions at the interface is due to the weak

value of the Fe;iðw0
e;iÞ functions at y ¼ 0, which are of

order 
10�2. This result itself is a consequence of the

numerical value of B (Eq. (40)) which can be shown to

be necessarily weak. Indeed, for large enough Prandtl

numbers, a feature which actually holds (see Table 1),

one gets from Eq. (A.21):

NðPrÞ � 8

5
Pr�1=2 þ 12

35
Pr�3=2 þ 
 
 
 ð42Þ

and then from (40), B � 0, which implies:
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Fig. 3. Plot of the functions Fe;iðw0
e;iÞ according to Eq. (29),

supplemented with Eqs. (26) and (14) as a function of the

dimensionless variable y=R, in the case of an oil droplet of

n-pentane moving in water.

-0.3

-0.2

-0.1

0

0.1

-0.25 -0.15 -0.05 0.05 0.15

    = 0.1

   τ 
τ 

τ 
= 0.2

= 0.3

Re e = 50

y/R

(K)
~ )0(

,ieT

waterCCl 4

Fig. 4. Plot of the viscid thermal distributions eTT 0
e;i given by Eqs.

(27) and (28), as a function of the dimensionless variable y=R, in
the case of an organic droplet of n-pentane at h ¼ 70 �C moving

in water at h ¼ 20 �C.
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Ce �
3

1þ b
1

Pre

�
þ bffiffiffiffiffiffiffiffiffiffiffiffi

PrePri
p

�
and

Ci � � 3

1þ b
1ffiffiffiffiffiffiffiffiffiffiffiffi
PrePri

p
�

þ bffiffiffiffiffiffi
Pri

p
� ð43Þ

The values of Fe;ið0Þ are directly derived as:

Feð0Þ ¼
Ce

6
ffiffiffi
p

p þ Fpeð0Þ

� 1

2
ffiffiffi
p

p b
1þ b

1ffiffiffiffiffiffiffiffiffiffiffiffi
PrePri

p
�

� 1

Pre

�
ð44aÞ

Fið0Þ ¼
Ci

6
ffiffiffi
p

p þ Fpið0Þ

� 1

2
ffiffiffi
p

p 1

1þ b
1

Pri

�
� 1ffiffiffiffiffiffiffiffiffiffiffiffi

PrePri
p

�
ð44bÞ

They are at least as small as the Prandtl numbers are

large. A similar conclusion is achieved if Pre and Pri are
not necessarily large but they have the same order of

magnitude, as is the case for instance for water and

carbon tetrachloride liquids. Indeed, let us consider the

particular case where Pre ¼ Pri. Then it follows from (37)

that Fpeð0Þ ¼ �Fpið0Þ, and from (40) that B � 0. This

implies from (35) that Ce ¼ �Ci, and finally

Feð0Þ ¼ �Fið0Þ. This is compatible with the condition at

the interface (33) only if Feð0Þ ¼ Fið0Þ ¼ 0. Conse-

quently, at least in the small time limit, the viscid effects

will not have a great importance on the thermal distri-

butions at the interface, compared to that of Chao. It

remains to analyze these effects in the two adjacent in-

ternal and external boundary layers. Apart the weight

factor s3=2=
ffiffiffiffiffiffiffi
Ree

p
, viscid contributions are closely linked

to the behavior of the functions Feðw0
eÞ and Fiðw0

i Þ which
are first the relevant quantities to analyze. Fig. 3 exhibits

a plot of these functions in the case of a droplet of n-
pentane, 5 with Ree ¼ 100, at three different times,

s ¼ 0:05, 0.10 and 0.15. It clearly features that viscid

contributions are negligible at the interface, as previ-

ously stated. Also we note the spreading of these regions

with increasing time. These features are reproduced in a

similar manner by the full viscid thermal distributions

(27) and (28), which are ploted in Fig. 4, in the case of a

hot droplet of carbon tetrachloride ðh ¼ 70 �CÞ in water

at 20 �C, with Ree ¼ 50, at three different times, s ¼ 0:1,
0.2 and 0.3. Together with the above mentioned

spreading effect, they also exhibit a quick increase with

time as a consequence of the s3=2 factor. Also, it is to be

noted that viscid corrections to thermal distributions are

most significant in the liquid droplet than in the sur-

rounding liquid. This is partly due to the occurrence of

the b coefficient (b ¼ 3:56 and 4.10 for n-pentane and
5 It should be noted that functions Fe;iðw0
e;iÞ depend on the

nature of both the internal and external liquids, but not of their

temperature.
carbontetrachloride against water respectively) which

enter in the expression of eTT ð0Þ
i . The spreading effect can

be explained by the analytical form of the functions

Fe;iðw0
e;iÞ which are fast decreasing function of the di-

mensionless variable (14), while the behavior at the in-

terface arises from the conditions (33) and (34). Let us

finally mention that for most cases the absolute maximal

value of these functions (see Fig. 3) is 
0.2. This leads to
absolute contributions of order 
0.1–0.3 K (see Fig. 4)

for the viscid thermal distributions which remain obvi-
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ously small in the range of applicability of our study, i.e.

large Reynolds and Peclet numbers to ensure the thin

boundary layer approximation, and short time analysis.

It must be stressed however that if the thermal viscid

distributions 
s3=2Fe;ið0Þ are small, this is no longer the

case of the heat flux 
s1=2F 0
e;ið0Þ, even at short time,

which is a very important feature.
6. Conclusion

In this work, we have studied the effect of viscosity on

the thermal transfer at and on both sides of a spherical

interface associated with a translating liquid droplet

moving at constant velocity in another liquid of infinite

extent at rest. Calculations of the thermal internal and

external distributions have been done along a pertur-

bative scheme valid in the thin boundary layer approxi-

mation. Exact algebraic solutions have been derived in

the small time limit. For a part of them, they are ex-

pressed as power series of Hermite polynomials. A nu-

merical application to a concrete case of an organic

droplet of n-pentane and carbon tetrachloride moving in
water has been performed. It follows from this study

that the transient thermal distributions are pratically not

disturbed at the interface, by comparison to the inviscid

distributions. However, this feature hold no longer for

the heat flux. Viscous effects on the thermal transfer are

shown on the contrary to occur preferably on both side

of the interface, in the two adjacent boundary layers,

with a stronger effect for the liquid droplet. We are

planning to extend our study to the evaluation of tran-

sient thermal distributions at any time and also to in-

vestigate the case where the droplet radius is not kept

fixed.
Appendix A. Rsolution of Eq. (20)

In this Appendix, we give the calculation of a par-

ticular solution of differential equation (20). For a part

of it, it is based on an expansion on a set of Hermite

polynomials. For the sake of simplicitly, mathematical

details will be omitted and only the main steps of the

method of resolution will be exposed. As in the main

text the variable z will stand for Z=
ffiffiffiffiffi
Pr

p
.

First the i2erfc z function in the right hand side of Eq.
(20) is rewritten as a combination of the erfc z and

expð�z2Þ functions, which leads to [4]:

F
00 ðZÞ þ 2ZF 0ðZÞ � 6F ðZÞ

¼ K
4

ð1
�

þ 2z2Þerfc z� 2ffiffiffi
p

p z expð � z2Þ � 1

�
expð�Z2Þ

ðA:1Þ
The search of a particular solution FpðZÞ may be done

splitting it in a first step as Fp ¼ F0 þ F1 þ F2 where F0 is
the solution of the following equation:

F 00
0 ðZÞ þ 2ZF 0

0ðZÞ � 6F0ðZÞ ¼ �K
4
expð�Z2Þ ðA:2Þ

which immediately provides:

F0ðZÞ ¼
K
32

expð�Z2Þ ðA:3Þ

Next, the F1ðZÞ function is calculated in order to elimi-

nate the complementary error function erfc z in the right

hand side of Eq. (A.1). For that purpose, F1ðZÞ is written
as F1ðZÞ ¼ W1ðZÞerfc z, with W1ðZÞ such that:

W
00

1ðZÞ þ 2ZW0
1ðZÞ � 6W1ðZÞ

¼ K
4
ð1þ 2z2Þ exp�Z2 ðA:4Þ

This yields

W1ðZÞ ¼ ðaþ bZ2Þ exp�Z2

with

a ¼ � K
32

1

�
þ 1

3Pr

�
and b ¼ � K

24Pr
ðA:5Þ

and finally

F1ðZÞ ¼ � K
32

expð�Z2Þerfc z 1

�
þ 1

3Pr
þ 4

3
z2
�

ðA:6Þ

Then the differential equation the remaining F2ðZÞ
function obeys is derived as:

F 00
2 ðZÞ þ 2ZF 0

2ðZÞ � 6F2ðZÞ

¼ � K
2

ffiffiffi
p

p e�ðZ2þz2Þðazþ bz3Þ ðA:7Þ

with

a ¼ 3

4

�
þ 1

3Pr
� 1

12Pr2

�
and b ¼ � 1þ Pr

3Pr

� �
ðA:8Þ

So the right hand side in (A.7) contains no longer any

complementary error function but an exponential fac-

torized by an odd polynomial.

The problem is now to find a particular solution of

Eq. (A.7). In a first step we carry out the change of

variable Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ z2

p
, and we note now GðY Þ for

F2ðZÞ. Next, through the change of function GðY Þ ¼
�ðK=2

ffiffiffi
p

p
Þe�Y 2SðY Þ, Eq. (A.7) is transformed as a new

differential equation on SðY Þ. Reexpressing in its right

hand side azþ bz3 as a linear combination of the Her-

mite polynomials H1ðY Þ and H3ðY Þ, and rearranging

terms in its left hand side, gives after a number of al-

gebraic manipulations:
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½S 00 ðY Þ � 2YS 0ðY Þ � 8SðY Þ� þ Pr�1 S00
�

� 4YS0 � 2Sð1� 2Y 2Þ
�

¼ A1H1ðY Þ þ A3H3ðY Þ ðA:9Þ

In the right hand side of (A.9), the coefficients A1 and A3
are functions of Pr defined as:

A1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Pr
p 3

8

�
� 1

12Pr
� 1

24Pr2

�
ðA:10aÞ

A3 ¼ � 1

24

1

Pr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Pr

p ðA:10bÞ

At this stage, we proceed to the afore-mentioned poly-

nomial expansion, expanding SðY Þ in a power series on a
basis of (odd) Hermite polynomials:

SðY Þ ¼
X
n odd

snHnðY Þ ðA:11Þ

Making use of the differential equation the Hn�s obey

and taking account of a number of their recurrence

formulas [10], one gets from (A.9) and (A.11) the fol-

lowing result:

�
X
n

ð8þ 2nÞsnHnðY Þ þ Pr�1
X
n

snHnþ2ðY Þ

¼ A1H1ðY Þ þ A3H3ðY Þ ðA:12Þ

The following recurrence formulas are directly deduced

from this equation, identifying each polynomial contri-

bution:

s1 � �A1
10

ðA:13aÞ

s3 ¼ � 1

14
A3

�
� s1
Pr

�
¼ � 1

14
A3

�
þ 1

10Pr
A1

�
ðA:13bÞ

sn ¼
1

Pr
sn�2

8þ 2n
for nP 5 ðA:13cÞ

As SðY Þ in (A.11) is expanded on a set of odd Hermite

polynomials, we are entitled to write n ¼ 2p þ 1 which

leads finally to:

SðY Þ ¼
X
pP 0

rpH2pþ1ðY Þ ðA:14Þ

with

r0 ¼ s1 ¼ �A1
10

¼ � 1

240

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Pr

p 9

�
� 2

Pr
� 1

Pr2

�
ðA:15aÞ

r1 ¼ s3 ¼ � 1

14
A3

�
þ 1

10Pr
A1

�
¼ 1

3360

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Pr

p 1

Pr

�
þ 2

Pr2
þ 1

Pr3

�
ðA:15bÞ

The resolution of the recurrence formula (A.13c) is

straightforward, and leads to the simple result:
rp �
1

2Pr

� �p�1
7!!r1

ð2p þ 5Þ!! for pP 2 ðA:16Þ

It is important to note that the numerical value of the

coefficients rp decreases very quickly, practically by a

factor 10 at each time. This allows to truncate the series

(A.14) to a few number of terms for its numerical eval-

uation.

Gathering all these results, we get for F2ðZÞ the closed
expression:

F2ðZÞ ¼ GðY Þ

¼ � K
2

ffiffiffi
p

p e�ðZ2þz2Þ
X
pP 0

rpH2pþ1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ z2

p
Þ ðA:17Þ

and, adding Eqs. (A.3), (A.6) and (A.17), the overall

expression of a particular solution of Eq. (20)

FpðZÞ ¼
K
32

e�Z
2

1

"
� erfc z 1

�
þ 1

3Pr
þ 4

3
z2
�

� 16ffiffiffi
p

p e�z
2
X
pP 0

rpH2pþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ z2

p� �#
ðA:18Þ

In order to evaluate the Ce and Ci coefficients (cf. Eqs.

(35)) from Eqs. (36a) and (36b), the value of this func-

tion and that of its derivative at the origin must be

calculated. Evaluation of Fpð0Þ is straightforward:

Fpð0Þ ¼ � K
96Pr

ðA:19Þ

The derivative F 0
pð0Þ is derived directly from (A.18) as:

F 0
pð0Þ ¼

K
16

ffiffiffi
p

p NðPrÞ ðA:20Þ

with

NðPrÞ ¼ 1

�
þ 1

3Pr

� ffiffiffiffiffi
1

Pr

r
� 8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Pr
Pr

r
RðPrÞ ðA:21Þ

In the last expression, RðPrÞ corresponds to the value at

the origin of the term by term derivative of the poly-

nomial expansion given in Eq. (A.14):

RðPrÞ ¼
X
pP 0

rpðPrÞH 0
2pþ1 0ð Þ

¼ 2r0ðPrÞ þ
X
pP 1

ð�1Þp2pþ1ð2p þ 1Þð2p � 1Þ!!rpðPrÞ

� 2r0ðPrÞ � 4 7!!r1ðPrÞ
X
pP 1

�1
Pr

� �p�1 ð2p þ 1Þ!!
ð2p þ 5Þ!!

ðA:22Þ

The study of the remaining series in (A.22) leads, for

Pr > 1, to the result [11]:



D. L�eeger, R. Askovic / International Journal of Heat and Mass Transfer 46 (2003) 3465–3475 3475
RðPrÞ ¼ 2r0ðPrÞ � 2 7!!r1ðPrÞ
2

15
Pr

(

þ ðPr5=2 þ Pr7=2ÞArc tg
ffiffiffiffiffi
1

Pr

r
� 2

3
Pr2 � Pr3

)
ðA:23aÞ

It should be noted that this formula can be also found

starting from the integral expression (25). Moreover, in

that case, it can be proved that it holds for Pr < 1 as well.
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